Synthesis and Selective Coloration of Monoaza Crown Ethers Bearing Picrylamino-type Side Arms for Alkali Metal Salts and Methylamine

Wei ZENG¹, Zhi Hua MAO², Mi GONG², Chun Chun ZHANG¹, Sheng Ying QIN^{1*}, Jun SU¹

¹Department of Chemistry, Sichuan University, Chengdu 610064 ²Analytical and Testing Center, Sichuan University, Chengdu 610064

Abstract: *N*-pivot lariat ethers with picrylamino group as a chromophore (1, 2 and 3) have been prepared by reaction of *N*-(4-aminoaryl)monoaza crown ethers with picryl chrolide, and the selective coloration of 1, 2 and 3 for alkali metal salts and amines has been studied by UV-Vis spectra.

Keywords: Synthesis, selective coloration, monoaza crown ether, alkali metal salts, methylamine.

Host-guest chemistry continues to be an important theme in organic chemistry¹. As molecular receptors, crown ethers have been widely employed in the field of analytical chemistry, chemical sensors and ionic extraction². Since 4'-picrylamino benzo-15crown-5 was synthesized by Takagi in 1971, various chromogenic crown ethers have been successively reported ³, but very limited studies have been reported so far on monoaza-crown ether bearing picrylamino-type side chain⁴. In recent years, many different receptors have been prepared for recognition studies. Such as the receptors containing benzene ring, naphthalene ring, bicyclic guandinium and aza-crown ring. The later can be expected to have some substrate recognition, because the rigid side chain and the aza-crown ring constructed the cleft, which may possess conformational control of N atom⁵. In this paper, we developed *N*-pivot lariat ethers bearing picrylamine group as chromophore (**Scheme 1**) in order to elaborate conveniently the selective coloration of chromogenic crown ether for metal salts and some organic molecules by the UV-Vis spectra.

Experimental

Chromogenic crown ethers 1, 2 and 3 were synthesized according to the procedure shown in **Scheme 1**. Condensation reaction of 2, 2'-[(4-nitrophenyl) imino] bisethanol 4 with 1.1 eq. of diethyleneglycol ditosylates or triethyleneglycol ditosylates in the presence of NaH and THF to give monoaza crown ethers **5a** (78 %) and **5b**⁶ (76 %),

^{*}E-mail: zengwei109@hotmail.com

Wei ZENG et al

respectively. Reduction of **5a** or **5b** with Pd/C (10 %) in EtOH at 50 °C provided **6a**⁷ (98 %) and **6b**⁶ (97 %), respectively; 4-nitrobenzyl chloride **7** was treated with monoaza-15-crown-5 and 2.1 eq. of Na₂CO₃ in CH₃CN at reflux to give **8**⁸ in 94 % yield. **8** could not reduce with Pd/C to give **9** because the monoaza-15-crown-5 was cleavaged from the *N*-(4-nitrobenzyl) monoaza-15-crown-5 by hydrogenation. But **8** could be reduced with 1.3 eq. of SnCl₂·2H₂O, conc. HCl and EtOAc to produce **9** (85 %). Finally, the *N*-(4-aminoaryl) monoaza crown ethers (**6a**, **6b** and **9**) were treated with 1.0 eq. of picryl chloride in the presence of Na₂CO₃ in THF, followed by silica-gel chromatography using CH₃OH as eluent to provide **1** (67 %), **2** (68 %) and **3**⁹ (59 %). The structures of the key intermediates and all the target compounds were determined by ¹H NMR, IR, MS spectra and elemental analysis⁹.

Scheme 1

Reagents and conditions: (i) diethyleneglycol ditosylates or triethyleneglycol ditosylates, NaH, THF, reflux; (ii) H₂, 10% Pd/C, CH₃CH₂OH, 50°C; (iii) Picryl chrolide, Na₂CO₃, THF, rt; (iv) monoaza-15-crown-5, CH₃CN, Na₂CO₃, reflux; (v) SnCl₂·2H₂O, conc. HCl, EtOAc,40°C.

Results and Discussion

Absorption maxima of crown ethers 1, 2 and 3 and their complexes were at visible region. The wave length of the maximum absorption of 3 is far shorter compared to 1 and 2, due to the methylene bridge between the nitrogen atom of crown ether ring and benzene ring weakened auxochromic role of tertiary amine group. As shown in **Table 1**, crown ether 3 exhibited a moderate selective coloration towards LiCl, but 1 and 2 did not, it is interesting to note that 1 showed selective coloration for LiClO₄, and the absorption maxima shifted from 118 nm to shorter wave lengths. The interaction of 1 with NaClO₄ and KClO₄ did not induce the changed color. It is likely that compounds 2 and 3 exhibited characteristic performance when they interacted with above alkali metal salts, 2 with NaClO₄ afforded only a slight spectral change. Compound 3 has moderate interaction with LiCl, LiClO₄, NaClO₄ and KClO₄. But in all cases the absorption maxima shifted to a longer wave lengths with no selectivity. The differences of UV-Vis spectra may be relative to the rigid of the molecular receptor, the diameter of the crown ether ring and the anion of metal salts.

788 Synthesis and Selective Coloration of Monoaza Crown Ethers for Alkali Metal Salts and Methylamine

Table 1 Absorption maxima (λ_{max} , nm) and molar absorptivity values (ϵ) of crown ether-alkalimetal ion complexes

Alkali Metal Salts	$\lambda_{\max} (\epsilon, M^{-1} cm^{-1}) \Delta \lambda_{\max}$		
	1	2	3
Free	478(1.0×10 ⁴)	479(0.67×10 ⁴)	377(2.17×10 ⁴)
LiCl	478(0.93×10 ⁴), 0	479(0.63×10 ⁴), 0	440(1.28×10 ⁴), 63
LiClO ₄	360(1.1×10 ⁴), -118	479(0.66×10 ⁴), 0	448(1.21×10 ⁴), 71
NaClO ₄	478(1.0×10 ⁴), 0	482(0.65×10 ⁴), 3	431(1.12×10 ⁴), 54
KClO ₄	478(0.79×10 ⁴), 0	481(0.67×10 ⁴), 2	431(0.74×10 ⁴), 54

UV-Vis was recorded at $23\pm1^{\circ}$ C in 1 cm quartz cell by using Hewlett-Packard8452A Diode Array Spectrophotometer. 50%CHCl₃-50%H₂O (v : v) was used as the solvent. Concentrations were 1.0×10^{-5} mol/L for crown ethers and 1.0×10^{-4} mol/L for the alkali metal salts and 0.2mol/L for tetramethyl ammonium hydroxide. Because amino nitrogen atom on crown ether ring may be protonized and affect its coordination with alkali metal ions, to the solution of **1**, **2** and **3** was added tetramethyl ammonium hyroxide, which do not affect the λ_{max} of chromogenic crown ethers.

Table 2 Absorption maxima (λ max, nm) and molar absorptivity values (ϵ) in CHCl₃ of crown ether-organic amine complexes.

Organic amine	$\lambda_{\max} (\epsilon, M^{-1} cm^{-1}) \Delta \lambda_{\max}$		
	1	2	3
Free	477(1.0×10 ⁴)	479(0.67×10 ⁴)	377(2.17×10 ⁴)
CH ₃ NH ₂	405(0.67×10 ⁴), -72	478(0.70×10 ⁴), 0	370(1.10×10 ⁴), -7
(CH ₃) ₂ NH	$477(1.1 \times 10^4), 0$	440(1.22×10 ⁴), -39	351(1.92×10 ⁴), -26
(CH ₃) ₃ N	$477(1.1 \times 10^4), 0$	457(1.47×10 ⁴), -22	350(1.60×10 ⁴), -27
(CH ₃ CH ₂) ₃ N	$476(1.1 \times 10^4), 0$		

UV-Vis were recorded at $23\pm1^{\circ}$ C in 1 cm quartz cell by using Hewlett-Packard8452A Diode Array Spectrophotometer. 50%CHCl₃-50%H₂O (v : v) was used as the solvent. Concentrations were 1.0×10^{-5} mol/L for crown ethers and 1.0×10^{-4} mol/L for amines

Figure 1 Absorption spectra of 3 in the Figure 2 Absorption spectra of 1 in the absence and presence of amine

3 and amine: 1.0×10^{-5} mol/L and 1.0×10^{-4} mol/L, respectively, in CH₃Cl

1 and amine: 1.0×10^{-5} mol/L and 1.0×10^{-4} mol/L, respectively, in CH₃Cl

Wei ZENG et al

Figure 3 the possible cleft constructed by the exo-azacrown ether 1

As shown in **Table 2**, compounds **2** and **3** complexed with $(CH_3)_2NH$ and $(CH_3)_3N$ in certain degree and the λ_{max} of these complexes shifted to the shorter wavelengths (see **Figure 1**). Compound **1** has a strong coordination towards CH_3NH_2 (see **Figure 2**), and its $\Delta\lambda_{max}$ is up to 72 nm. The reason might be that CH_3NH_2 extracted the hydrogen atom of picrylamino group like triethylamine³ to form protonated $CH_3NH_3^+$, the size and shape of $CH_3NH_3^+$ matched well with the cleft (see **Figure 3**) constructed by the exoazacrown ether **1** and form a more stable intramolecular complexes. The ion pair become more tight with hydrogen bonds, electrostatic forces and vander waals interactions, *et al.*

References and Note

- 1. R. M. Izatt, K. Pawlak, J. S. Bradshaw, Chem. Rev., 1995, 95, 2529.
- 2. R. A. Bartsch, H-S. Hwang, V. S. Talanov, J. Org. Chem., 1999, 64, 5341.
- 3. B. P. Bubnis, G. E. Pacey, Tetrahedron Lett., 1984, 25, 1107.
- 4. S. Y. Qin, Z. F. Lu, J. Z. Li, X. M. Liu, Youji Huaxue (Chenese Journal of Organic Chemistry, in Chinese)., 1995, 10, 115.
- (a). A. Galan, D. Andreu, A. M. Echararren, D. Prados, J. de Mendoza, J. Am. Chem. Soc., 1992, 114, 1511; (b). G. Y. Lu, X. B. Wan, C. M. Jin, W. Song, Huaxue Xuebao (Acta. Chim. Sin, in Chinese)., 2000, 58, 890.
- 6. J. P. Dix, F. Vögtle, Angew. Chem., 1978, 90, 893.
- 7. W. Zeng, X X Lu, S Y Qin, *Huaxue Yanjiu Yu Yingyong(Chemical Research and Application, in Chinese).*, **1999**, *11*, 531.
- R. A. Schultz, B. D. White, D. M. Dishong, K. A. Arnold, G. W. Gokel, J. Am. Chem. Soc., 1985, 107, 6659.
- 9. Data of spectral analysis were submitted to editorial office of CCL.

Received 16 September, 2002